User talk:Ank5133

From RepRap
Revision as of 23:40, 26 June 2012 by Ank5133 (talk | contribs)
Jump to: navigation, search

3D Printing Blog Space

About Me

My name is Adnan Khan and I will be entering my 7th semester at Penn State as a senior in the fall. I'm majoring in Industrial Engineering with a minor in Six Sigma Methodology. I signed up for a summer work-study position as a student research assistant for Dr. Richard Devon and am working under David Saint John.

The position involves working with open source 3D printers, specifically RepRaps. One of my responsibilities includes the maintenance of and contribution to the RepRap wiki. Currently, I am writing a blog about certain articles and various literature that I encounter during my summer job experience. I will also strive to add to this page (which will be used for the blogging) once the summer has ended.

Since Wikipedia, or any wiki database, does not have a comments section enabled, please feel free to email me ([email protected]) about any thoughts and/or suggestions you may have to improve the look of this page, add some insight, further my knowledge, etc. All feedback will be greatly appreciated.


An Inspiring RepRap Story in New Zealand - Wednesday, June 27, 2012

Gary Willis, a carpenter from New Zealand suffered a serious shoulder injury that prevented him from practicing his trade any longer. However, that did not force him to give up on his life ambition. Instead, he decided to team up with his stepson and purchase a 3D printer from Europe for $2500, which really isn't a terrible price at all. And this 3D printer ended up being a RepRap!

Since Willis was already mechanically adept from his experience as a carpenter, he found the learning curve for the printer to be fairly smooth. Taking basic CAD lesson and utilizing his stepson's electronics expertise, Willis was soon making his own creations.

An interesting fact from the article: Willis is only one of three people in New Zealand to own a 3D printer.

Hopefully we can see the printing revolution expand down under.


Should Apple Invest in 3D Printing? - Tuesday, June 26, 2012

Think of one company that almost all of your friends and family own a product from. Microsoft and Apple would most probably be two names that pop up in your mind. While it is common knowledge that Microsoft is far more successful in the operating systems market (due to its compatibility with hardware from various companies such as Dell and HP) and in terms of popularity, not many people are aware of Apple's market capitalization power. Due to having the greatest value in total shares, Apple has a massive war chest which easily gives it the capability of investing in fast growing profitable industries. One of these industries, as you can decipher from the emphasis placed on it by the blog, is three dimensional printing.

Steve Jobs, Apple's founder, was a genius in his field. He could implement a number of intuitive and pioneering changes in the world of music, cell phones, and computers that brought huge competition to the business. The iPhone, iPad, and iPod are some of the regular Apple accessories that we can see in someone's hands on a daily (or hourly) basis.

Now, the most critical segment of this discussion isn't about the type of products that were released. It's about the revolutionary approach that Jobs took since none of those former three products were invented by the Apple founder. Jobs made vast improvements to technological items that were already being circulated in the market. Once these items were fine-tuned and tweaked by Apple and released with the fruit logo printed on it, sales would skyrocket because of Apple's immense popularity and reliability.

The same can be said if Apple decided to begin influencing 3D printing. By acquiring a large commercial 3DP corporation, Apple can take over and institute its own ideas and innovations to the design process. Purchasing said corporation should pose no issue to Apple since their large market cap provides them with enough funds to do so, and they would still have a hefty sum of money left over. If it continue its trend under the new leadership, the results will naturally be quite spectacular.

Here is an interesting short article showing that Apple has already been riding the 3D printing wave: iPhone cases


3D Printing's Growing Influence in the Medical World - Monday, June 25, 2012

In one of my previous blog entries, I wrote about the impending "food revolution" that could be brought forth by 3D printing, since chocolate has been making headlines. While everyone would be highly interested in watching their favorite recipes being printed out of a nozzle and onto a bed, there is also another, far more important industry that could benefit from 3D printing. The general public is conscious of their own and their loved ones' health conditions, so it is natural to involve 3D printing in the field of reconstructive surgery and prostheses.

Last February, an 83 year old patient suffered from a serious bone infection which would force her to relinquish her entire jaw. Due to the patient's age, a regular surgical procedure could be risky, so a new route was chosen.

A graphic design of the potential jaw implant was created and sent to a machine, which analyzed its cross sections. These would consist of titanium powder which would have each successive section layer melted onto the previous layer. Once the structure was completed, it was given a bioceramic coating. This type of coating allows compatibility between the implant and the patient due to its biomaterial makeup. Attaching the jaw took a mere four hours, compared to the 20+ hours that are usual in a standard surgery.

The recovery process was phenomenal. The patient could swallow after less than 24 hours and was able to be discharged after four days.

Prospects for revolutionizing the realm of surgery are excellent, however, there is still a great deal of research and time required in order for major advancements to occur. Biological, biochemical and chemical processes all need to be taken into account, and no two patients are the same. In order to print organic bone and tissue, the printers need organic material, which is naturally quite difficult to come by, especially in large quantities.

But on a brighter note, we can all witness the benefits of printed medical parts. The implants can be perfect fits for the patient, the recovery time is less, and as a whole, medical costs dip. In this day and age, the cost of hospitalization and operations can be burdensome to anyone, but in the future, 3D printing might be the game changer.



My Personal Commentary on the Commercial 3D Printing Industry - Thursday, June 21, 2012

Some technologies become public gradually, with the public keeping a close watch on them, waiting for it to occupy their homes, cars, or anywhere of convenience. Over one hundred years ago, the idea of motion pictures was on everyone's lips and such an invention was expected to come about shortly within the relative time frame. Although everyone was awed at such a conception, they were all well aware of its production and imminent release. The same can not be said for 3D printing.

Only a select few individuals, who were primarily developing this technology, knew its happenings. This "secrecy" and behind the scenes approach may have been one of the contributing factors to the immense success of the 3D printing industry. Releasing the technology to the world at the right time yields optimal results. The manufacturers and developers must have taken the rapidly changing market and competing industries into account before making 3D printing a commercial idea. If true, it is most definitely, a genius plan. A plan that should be used by other future inventors in the long run.

3D printing is a rapidly growing industry. On the surface, one can notice that prices for the printer are dropping dramatically compared to the premier releases. Printers costing tens of thousands of dollars can now be purchased for a much more affordable sum of $3000, and I foresee prices lowering in the future. Also, the flexibility of printing materials is improving due to the capability of more materials being able to be printed. Plastics dominated the scene for a while until cutting edge improvements have allowed for food and metals to be added to the materials base. Down the line, the possibility for almost anything to be printed does not seem to be a far-fetched idea.

In addition to the aforementioned benefits of 3D printing, another key advantage is in the technology itself. 3D printing is additive manufacturing, therefore, materials are joined and added together in order to create the final product. This is accomplished via the layering sequences. Because of this, any type of complex design can be created.

I believe that the horizon is clear for 3D printing to continuously grow and improve. New ideas and innovations keeping sprouting and the room for creativity will never disappear. There might be day where we could see 3D printing being a pioneer for new treatment methods in the medical field. Not just for instrumental and machine design, for actually printing out spare limbs and body parts. Reconstructive surgery could be completely revamped. The world may even become dependent on 3D printing for a vast number of processes.

The potential is limitless.


Review of the Open Hybrid Mendel wiki page - Wednesday, June 20, 2012

During the course of my research experience, I have been exposed to the Open Hybrid Mendel 3D printers, which are an improvement over the original Mendel. As stated on the OHM main page, the term "hybrid" is due to multiple design inputs that were taken into account for creating this model. Like a majority of other designs, there is not a wealth of information on OHM presented in this wiki. I was requested to determine what necessary (or mandatory) changes needed to be made in order to upgrade the look and feel of the page.

In comparison to other Mendel hybrids and designs, the OHM pages are fairly well defined and explained. The main page generalizes the six sub-systems and has a list of all parts with visuals corresponding to their respective sub-system. These parts are all organized in a very structured manner and aren't scattered across the page.

However, here are some problems that I noted:

1) On the How to build an OHM page, I can see a huge need for improvement. There is virtually nothing here, except for a few images relating to the frame's construction (of which, no instructions are provided). I suggest that the instructions used for assembling the Ponoko Darwin's extruder be used as a template for the OHM's extruder, which can be found here.

It provides a paragraph long background, design variations that have been made along the way, and step-by-step instructions accompanied by images.

If this method is used for the other subsystems (Frame, carriage, X-Z assembly, etc...), the OHM page will be far more useful, especially in terms of its construction.

2) The Ponoko main page has a "Basic Rules" section which briefly explains some of the problems a user/designer can encounter. Some of these are indeed basic and obvious, such as "don't put bits of plastic in your mouth or other bodily orifices" while another rule gives details on how to address razor sharp edges resulting from cutting the rod.

The OHM page has no such section, and I feel that every design page should include one for safety and general knowledge purposes.

3) The Mini-Mendel/Huxley page contains a section about further development of the ideas and construction behind the Huxley, labeled as "Ongoing Development"

Perhaps a similar section could be added to the OHM page. It would give everyone an outlet to either read about or submit more information regarding the design. This all adds to the contribution of the wiki and the community in general.



A 3D Printer for Every Household: The Choc Creator Version 1 - Tuesday, June 19, 2012

This will be a rather more interesting entry compared to the last two since I'll actually be discussing a certain type of printer. And I know for a fact that any reader would enjoy what is to follow.

3D printing has been making rapid advancements in the technology world. Combining creative, innovative thoughts with a technically oriented mindset results in a recipe for success.

Chocolate is a delicacy loved by a majority of the world's population. Imagine the popularity of a printer that could, in fact, print chocolate from your very own home.

This has now been made possible with the advent of chocolate 3D printers. The idea of such a printer originated in England. The prototype was created by Professor Richard Everson and Dr. Liang Hao, both scientists at the University of Exeter. While the technology isn't as advanced and complex enough to produce all types of food items, chocolate is a perfect start since it only requires a single ingredient, molten chocolate, to be extruded from the nozzle.

The process is similar to that of any 3D printer. As mentioned before, molten chocolate flows through the nozzle onto the heated bed. It can be deposited anywhere, and once a layer is complete, the next layer is built upon the previous one while it solidifies from cooling.

Chocolate must also have been chosen as an ideal starting point due to its safety level. Failure with printing molten chocolate simply results in a gooey mess and possibly damaged clothing. Unfortunately, this would never be the situation given that the intended object going in for printing is an automobile or airplane part. Even a highly minor issue in a single mechanical part can have catastrophic consequences, such as a car accident or a plane crash. This view is shared by Dr. Everson. Therefore, the low risk involved with chocolate makes it an easy item to experiment with.

Everson also voices another very powerful concept. A major outcome that can stem from the "food printing revolution" is co-creation, a marketing idea which allows the consumer to have a role in the production process. Instead of going to a grocery store and picking out generic forms of chocolate, an individual could watch their personalized chocolate creation being made right before their eyes. This can massively benefit manufacturing and business in numerous industries.

I foresee a very positive and profitable future not only for the chocolate 3D printing business, but for all forms of food as well.

Here is a Youtube videoshowing the chocolate 3D printer in action.



The Legal Ins and Outs of 3D Printing - Thursday, June 14, 2012

I came across a pretty interesting and eye opening (at least for myself) article [1] on the legal issues surrounding 3D printing. I never really thought anyone could get sued over printing exact replicas of action figures and other toys. The idea of doing something along these lines hadn't even crossed my mind.

For those who didn't read Clive Thompson's article, for which the link is provided for in the previous paragraph, here is the story:

Thomas Valenty, a Makerbot owner decides to design a couple of Warhammer toy models and uploaded the files on Thingiverse. However, a lawsuit was brought forth by Games Workshop, a Warhammer toy manufacturer. It claimed that Valenty had violated the conditions listed in the DMCA and could be subject to penalties. As a result, Thingiverse removed the files from the site.

However, digital rights attorney Michael Weinberg states that Valenty is not guilty of any crime. Since intellectual property in this case is subject to patent law instead of copyright law because the Warhammer toys are physical models, Valenty may not even need to have been held responsible for any copyright infringement.

Regardless of the consequences, I'm sure that many people will be infringing upon patent law just as much (or even more so) as they do with copyright law. Everyone has illegally downloaded music, games, and other software at some point in time.

I believe that creating such stringent laws for the 3D printing industry will decrease the level of creativity and talent for users. This is why I'm highly supportive of open source 3D printing since it fosters a wealth of new ideas without being impeded by the law.

Hopefully Weinberg and others can convince legislators to relax the current and future laws that govern 3D printing.

None of us want our creative, imaginative thoughts squashed.



Review of the "RepRap Family Tree" Wiki page - Wednesday, June 13, 2012

As anyone can see, the RepRap Family Tree is quite expansive and well organized.

One of the important items that I noticed in the family tree included the types of RepRap (e.g.: polar, cartesian). Prior to visiting this page, I had not read about the RepRap's movement features, but after doing some research on these types, I feel better acquainted. A cartesian RepRap can move along the X, Y, and Z axes (hence, a typical cartesian coordinate plane) while a polar RepRap can move its tool-head by turning it in a circular direction.

I also realized that a majority of the working RepRaps ended up being commercialized. If such a trend continues, there is a huge market for profiting in the 3D printing business, and this can prove to be valuable for a number of people and corporations. However, the obvious disadvantage with this situation would be the gradual decline of open source 3D printing which has been the core of the RepRap community. New ideas and innovations have spurred from the open source movement, since users can change and improve printing methods. There should be limits to commercialization in order to continue the users' growth in creativity that results from open source software and hardware.

Simplifying the tree might be an issue since most of the information presented on the tree is fairly important and relevant to the history of the RepRap. One suggestion I could make would be to be remove the "less common" RepRaps from the tree. Instead, they could all be listed by their date of inception, as well as their predecessor RepRaps. Here is a rough example in which the Ponoko lasercut Darwin is the "less common" RepRap and it directly originated from the Darwin.

Darwin --------> Ponoko lasercut Darwin

I feel that this initiative would clear up some space on the tree and make it look more presentable while maintaining most of the critical information.