Optimal Design of Thin-film Plasmonic Solar Cells using Differential Evolution Optimization Algorithms

From RepRap
Jump to: navigation, search
Sunhusky.png By Michigan Tech's Open Sustainability Technology Lab.

Wanted: Students to make a distributed future with solar-powered open-source RepRap 3-D printing and recyclebot recycling.
Contact Dr. Joshua Pearce or Apply here

MOST on RepRap: Projects and Publications], Methods, Lit. reviews
Twitter updates @ProfPearce

OSL.jpg

Desolar.jpg


Source

Abstract

An approach using a differential evolution (DE)optimization algorithm is proposed to optimize design parameters for improving the optical absorption efficiency of plasmonic solar cells (PSC). This approach is based on formulating the parameters extraction as a search and optimization process in order to maximize the optical absorption in the PSC. Determining the physical parameters of three-dimensional (3-D) PSC is critical for designing and estimating their performance, however, due to the complex design of the PSC, parameters extraction is time and calculation intensive. In this paper, this technique is demonstrated for the case of commercial thin-film hydrogenated amorphous silicon (a-Si:H) solar photovoltaic cells enhanced through patterned silver nano-disk plasmonic structures. The DE optimization of PSC structures was performed to execute a real-time parameter search and optimization. The predicted optical enhancement (OE) in optical absorption in the active layer of the PSC for AM-1.5 solar spectrum was found to be over 19.45% higher compared to the reference cells. The proposed technique offers higher accuracy and automates the tuning of control parameters of PSC in a time-efficient manner.


Keywords

Differential Evolution; Optimization Algorithm; Plasmonic Solar Cells; Solar Photovoltaic; Amorphous Silicon ; Metamaterials ; Solar cells ; Semiconductors

See Also