RepRapable Recyclebot: Open source 3-D printable extruder for converting plastic to 3-D printing filament

From RepRap
Revision as of 09:48, 27 May 2018 by J.M.Pearce (talk | contribs) (Created page with "{{MOST}} {{MOST-RepRap}} ==Source== * Aubrey L. Woern, Joseph R. McCaslin, Adam M. Pringle, and Joshua M. Pearce. RepRapable Recyclebot: Open Source 3-D Printable Extruder f...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search
Sunhusky.png By Michigan Tech's Open Sustainability Technology Lab.

Wanted: Students to make a distributed future with solar-powered open-source RepRap 3-D printing and recyclebot recycling.
Contact Dr. Joshua Pearce or Apply here

MOST on RepRap: Projects and Publications], Methods, Lit. reviews
Twitter updates @ProfPearce

OSL.jpg


This page is part of an international project hosted by MOST to use RepRap 3-D printing to make OSAT for sustainable development. Learn more.

Research: Open source 3-D printing of OSAT RecycleBot LCA of home recyclingGreen Distributed Recycling Ethical Filament LCA of distributed manufacturingRepRap LCA Energy and CO2 Solar-powered RepRapssolar powered recyclebot Feasibility hub Mechanical testing Lessons learnedMOST RepRap Build


Make me: Want to build a MOST RepRap? - Start here! • Delta Build Overview:MOSTAthena Build OverviewMOST metal 3-D printer Humanitarian Crisis Response 3-D Printer



Source

  • Aubrey L. Woern, Joseph R. McCaslin, Adam M. Pringle, and Joshua M. Pearce. RepRapable Recyclebot: Open Source 3-D Printable Extruder for Converting Plastic to 3-D Printing Filament. HardwareX 4C (2018) e00026 doi: https://doi.org/10.1016/j.ohx.2018.e00026 open access
    • Just the code: OSF

Abstract

Recyclebotrep.png
In order to assist researchers explore the full potential of distributed recycling of post-consumer polymer waste, this article describes a recyclebot, which is a waste plastic extruder capable of making commercial quality 3-D printing filament. The device design takes advantage of both the open source hardware methodology and the paradigm developed by the open source self-replicating rapid prototyper (RepRap) 3-D printer community. Specifically, this paper describes the design, fabrication and operation of a RepRapable Recyclebot, which refers to the Recyclebot’s ability to provide the filament needed to largely replicate the parts for the Recyclebot on any type of RepRap 3-D printer. The device costs less than $700 in mate rials and can be fabricated in about 24 h. Filament is produced at 0.4 kg/h using 0.24 kWh/kg with a diameter ±4.6%. Thus, filament can be manufactured from commercial pellets for <22% of commercial filament costs. In addition, it can fabricate recycled waste plastic into filament for 2.5 cents/kg, which is <1000X commercial filament costs. The system can fabricate filament from polymers with extrusion temperatures <250 °C and is thus capable of manufacturing custom filament over a wide range of thermopolymers and composites for material science studies of new materials and recyclability studies, as well as research on novel applications of fused filament based 3-D printing.

Keywords

Circular economy; Distributed recycling; Energy conservation; Polymer recycling; Sustainable development; distributed manufacturing; life cycle analysis; recycling; recyclebot; 3-D printing; polymer filament; Open source hardware; Open hardware; Fused filament fabrication; RepRap; Recycling; Polymers; Plastic; Recyclebot; Waste plastic; Composites; Polymer composites; Extruder; Upcycle;  Materials science

See Also

RepRapable Recyclebot
Error in widget YouTube: Unable to load template 'wiki:YouTube'