Ramps1.4plus

From RepRap
Revision as of 01:51, 1 September 2015 by 3dymy (talk | contribs)
Jump to: navigation, search

Template:RAMPS1.4plus

Crystal Clear action run.png
RAMPS1.4plus

Release status: Working

RAMPS1 3.JPG
Description
Newr Generation 3D Printer Controller.better than ramps1.4.
License
Author
Contributors
Based-on
Categories
CAD Models
External Link

RepRap Arduino Mega Pololu Shield, or RAMPS for short. It is designed to fit the entire electronics needed for a RepRap in one small package for low cost. RAMPS interfaces mix Arduino Mega with the powerful Arduino MEGA platform Ramps1.4Plus and has plenty room for expansion. The modular design includes plug in stepper drivers and extruder control electronics on an Arduino MEGA shield for easy service, part replacement, upgrade-ability and expansion. Additionally, a number of Arduino integrade boards can be added to the system as long as the main RAMPS board is kept to the top of the stack.

Introduction

Version 1.4 uses surface mount capacitors and resistors to further cover edge issue cases. As of version 1.3 in order to fit more stuff RAMPS is no longer designed for easy circuit home etching. If you want to etch your own PCB either get version 1.25 or Generation 7 Electronics. Version 1.25 and earlier are "1.5 layer" designed boards (i.e. it's double sided board, but one of layers can easily be replaced with wire-jumpers) that is printable on your RepRap with the etch resist pen method, or home fabbed with toner transfer.

This board is mostly based on Adrian's Pololu_Electronics and work by Tonok. Copper etch resists methods suggested by Vik. Also inspired by Vik's work with EasyDrivers. Circuit design based mostly on Adrian's Pololu_Electronics. Joaz at RepRapSource.com supplied initial pin definitions and many design improvements. Much inspiration, suggestions, and ideas from Prusajr, Kliment, Maxbots, Rick, and many others in the RepRap community.

Features

  • It has provisions for the cartesian robot and extruder.
  • Expandable to control other accessories.
  • 3 mosfets for heater / fan outputs and 3 thermistor circuits.
  • Fused at 5A for additional safety and component protection
  • Heated bed control with additional 11A fuse
  • Fits 5 Pololu stepper driver board
  • Pololu boards are on pin header sockets so they can be replaced easily or removed for use in future designs.
  • I2C and SPI pins left available for future expansion.
  • All the Mosfets are hooked into PWM pins for versatility.
  • Servo style connectors are used to connect to the endstops, motors, and leds. These connectors are gold plated, rated for 3A, very compact, and globally available.
  • USB type B receptacle
  • SD Card add on available -- Available now made by Kliment - Sdramps
  • LEDs indicate when heater outputs on
  • Option to connect 2 motors to Z for Prusa Mendel

<videoflash type="youtube">0k_KArg_sgA</videoflash>

Voltage and current notes

Standard RAMPS has a 5A PTC fuse that runs the Arduino Mega, the stepper motor drivers, and the D10 and D9 outputs. This PTC fuse is rated for a max of 30V, however other components on the board are rated for lower voltages, so care should be taken when using any voltage >12V.

Standard RAMPS has a 11A PTC fuse that runs the D8 output. This PTC fuse is rated for a max of 16V.

RAMPS was developed with 12V systems in mind, but it is possible to run it at 24V with various precautions. Most RAMPS boards will happily run at 13.8V or slightly higher with no modification. It is not recommended to exceed 15V for a standard setup, especially if you've bought your board from a cheaper supplier who may have used lower spec components than are recommended.

Notes:

  • Some variants of RAMPS have real fuses in place of the PTC fuses (eg: GRRF RAMPS). The max current limits will of course be different.
  • Many PSU's overestimate their max current capability. The max current you require will depend on all your components and the voltage you run them at. For a standard RAMPS board, running a machine with a heated bed, your PSU should generate 12V at >16A (20+A is better, as some PSU's overestimate their capabilities).