Modular Design for Spherical Microphone Arrays

From RepRap
Revision as of 15:22, 9 January 2019 by Hmreish (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search
Sunhusky.png By Michigan Tech's Open Sustainability Technology Lab.

Wanted: Students to make a distributed future with solar-powered open-source RepRap 3-D printing and recyclebot recycling.
Contact Dr. Joshua Pearce or Apply here

MOST on RepRap: Projects and Publications], Methods, Lit. reviews
Twitter updates @ProfPearce

OSL.jpg


Source

  • González, R., Pearce, J. and Lokki, T., 2018, August. Modular Design for Spherical Microphone Arrays. In Audio Engineering Society Conference: 2018 AES International Conference on Audio for Virtual and Augmented Reality. 2018 AES International Conference on Audio for Virtual and Augmented Reality (August 2018). Paper Number: P3-10. http://www.aes.org/e-lib/browse.cfm?elib=19701
Spheremic.JPG


Abstract

Spherical microphones arrays are commonly utilized for recording, analyzing and reproducing sound-fields. In the context of higher-order Ambisonics, the spatial resolution depends on the number and distribution of sensors over the surface of a sphere. Commercially available arrays have set configurations that cannot be changed, which limits their usability for experimental and educational spatial audio applications. Therefore, an opensource modular design using MEMS microphones and 3D printing is proposed for selectively capturing frequency-dependent spatial components of sound-fields. Following a modular paradigm, the presented device is low cost and decomposes the array into smaller units (a matrix, connectors and microphones), which can be easily rearranged to capture up to third-order spherical harmonic signals with various physical configurations.



Keywords

open source hardware; spherical microphone array; modular microphone;  3-D printing; FOSH; open hardware


See Also