Factors effecting real-time optical monitoring of fused filament 3D printing

From RepRap
Revision as of 16:02, 3 February 2019 by J.M.Pearce (talk | contribs) (See Also)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search
Sunhusky.png By Michigan Tech's Open Sustainability Technology Lab.

Wanted: Students to make a distributed future with solar-powered open-source RepRap 3-D printing and recyclebot recycling.
Contact Dr. Joshua Pearce or Apply here

MOST on RepRap: Projects and Publications], Methods, Lit. reviews
Twitter updates @ProfPearce

OSL.jpg


This page is part of an international project hosted by MOST to use RepRap 3-D printing to make OSAT for sustainable development. Learn more.

Research: Open source 3-D printing of OSAT RecycleBot LCA of home recyclingGreen Distributed Recycling Ethical Filament LCA of distributed manufacturingRepRap LCA Energy and CO2 Solar-powered RepRapssolar powered recyclebot Feasibility hub Mechanical testing Lessons learnedMOST RepRap Build


Make me: Want to build a MOST RepRap? - Start here! • Delta Build Overview:MOSTAthena Build OverviewMOST metal 3-D printer Humanitarian Crisis Response 3-D Printer



Source

Factors3dpm.gif

Abstract

This study analyzes a low-cost reliable real-time optical monitoring platform for fused filament fabrication-based open source 3D printing. An algorithm for reconstructing 3D images from overlapping 2D intensity measurements with relaxed camera positioning requirements is compared with a single-camera solution for single-side 3D printing monitoring. The algorithms are tested for different 3D object geometries and filament colors. The results showed that both of the algorithms with a single- and double-camera system were effective at detecting a clogged nozzle, incomplete project, or loss of filament for a wide range of 3D object geometries and filament colors. The combined approach was the most effective and achieves 100% detection rate for failures. The combined method analyzed here has a better detection rate and a lower cost compared to previous methods. In addition, this method is generalizable to a wide range of 3D printer geometries, which enables further deployment of desktop 3D printing as wasted print time and filament are reduced, thereby improving the economic advantages of distributed manufacturing.

Keywords

Real-time monitoring, 3D printing, Optical monitoring, RepRap, Open hardware, Quality assurance 


See Also

Videos: